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KILLING FIELDS IN COMPACT LORENTZ
3-MANIFOLDS

ABDELGHANI ZEGHIB

Abstract

Here we classify flows on compact 3-manifolds that preserve smooth Lorentz
metrics.

1. Introduction

The geodesic and horocyclic flows on the unit tangent bundle of a
hyperbolic surface are well known by their beautiful, but very different
properties. Nervertheless, these two flows with antagonistic dynamics
are unified by the Lorentz geometry. By this, we mean that both of them
are Killing fields for Lorentz structures. The purpose of this paper is
to show that Lorentz geometry not only unifies but also characterize
them. That is, the nontrivial (i.e., nonequicontinous) Killing fields for
Lorentz metrics in dimension three, are all “derived from” geodesic or
horocyclic flows.

Algebraically, the unit tangent bundle of the 2-hyperbolic space is
identified with the group PSL(2,R). The fundamental group of a hy-
perbolic surface is thus identified with a discrete subgroup I' in
PSL(2,R), and its unit tangent bundle with I'\ PSL(2,R). A one-
parameter group {f*} in PSL(2,R) determines on I'\ PSL(2,R) a
right translation flow 'z — T'zft. The geodesic (resp. horocyclic)
flow corresponds to the hyperbolic (resp. parabolic) one-parameter
group: gt = 602 692_:) (resp. ht = ((1) i)) . In fact any noncom-
pact one-parameter of PSL(2,R) is conjugate to {g**} or {h**} for
some real . If a one-parameter group is compact, it is conjugate to
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The Killing form on the Lie algebra of PSL(2,R) determines a bi-
invariant Lorentz metric. It thus passes to a Lorentz structure on the
left quotients I'\ PSL(2,R), which is preserved by the right transla-
tion flows. The deformations of the Lorentz structure and those of the
right translation flows were independently discovered by W. Goldman
(6] and E. Ghys [4]. They are constructed in the following way. Ob-
serve first that the flow determined by {f*} is preserved by the group
G = PSL(2,R) x R, where the left factor acts by the left transla-
tion and the R factor by the right translation by f!, i.e., the flow
itself. Therefore in order to get a flow which looks like that deter-
mined by {f*}, and in particular preserving the Lorentz structure, we
just need a geometric structure modeled on (G, PSL(2,R)). One may
imagine that this does not produce new flows. E. Ghys was the first
to see the contrary. For this let us call them Ghys flows (so also the
geodesic and horocyclic flows are now trivial Ghys flows). Now a de-
formation I of I' in G is given by a homomorphism ¢ : I' — R, so
that IV = Graph ¢ = {(v,c(y)) € PSL(2,R) x R}. Thus an element
v = (7,¢(7)) acts by & — yz f~e0).

Next, for cocompact I' we know that small deformations of I' are
realised by deformations of the geometric structure, and so small coho-
mological classes in Hom (I, R) generate Ghys flows.

Other trivial (in a dynamical sense) examples of isometric flows of
Lorentz manifolds, that we shall call equicontinuous flows, are those
which in fact preserve Riemannian metrics. They are easy to understand
(see section 2). Our principal result, is that, a nontrivial isometric
flow on a Lorentz compact 3-manifold is conjugate (as a flow) to the
suspension of a hyperbolic linear automorphism or to a Ghys flow. More
precisely, we have:

Theorem 1. Let (M,¢") be a smooth flow preserving a smooth
Lorentz structure on a compact 3-manifold M. Suppose that ¢' is not
equicontinuous. Then up to a rescale of a-constant multiple of the pa-
rameter t (that is replacing ¢ by ¢** for some constant «), and up to
finite covers, the flow is smoothly isomorphic (as a flow) to one of the
following :

i) The suspension with return time 1 of a toral hyperbolic linear
diffeomorphism.

it) A Ghys flow on the complete Lorentz space form M of constant
curvature. Moreover there is I' C PSL(2,R) isomorphic to the
fundamental group of a compact surface and a homomorphism
(not necessarily small) c : T' — R, so that for f* a hyperbolic
or parabolic one-parameter group, the manifold M is the quotient
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of PSL(2,R) by I" = Graph(c) = {(v,c(y))} acting as z —
vz f=. In particular T acts freely properly discontinuously on
PSL(2,R).

Let us now give some comments about Theorem 1.

1) By “up to finite covers”, we mean by taking a quotient of a finite
cover of our manifold. It is sometimes necessary to start by passing
to a finite cover as in the case of the geodesic and horocyclic flows of
orbifolds. ,

2) Note that the suspension flows may be considered in some sense
as a “limit” of geodesic flows. Indeed, such flows are obtained in an
algebraic way, as above, with the group SOL instead of PSL(2,R),
and at the Lie algebra level sol is a limit of algebras isomorphic to that
of PSL(2,R).

3) Singularities. Note that we do not assume the flows are non-
singular. But it follows from our result that this is the case if they are
nonequicontinuous.

4) Regularity. To simplify, we assume here the metric C*. It then
follows that the isometric flow itself is C*°. In fact the proof of Theorem
1 uses the existence of the curvature tensor for the metric and second
derivatives for the flow. Hence the metric and the flow must be C?. Our
proof also uses somewheres Sard’s theorem applied to functions derived
(algebraically) from the curvature. Thus, they must be C3 (since the
dimension is 3) and so the metric must be C5. Nervertheless we may
avoid this use of Sard’s theorem and so the C? hypothesis for the metric
and the flow are enough.

Note on the other hand that, by Kanai’s construction in [10], a volume
preserving Anosov flow on a 3-manifold preserves a C°-Lorentz metric,
which may be C? (e.g. the geodesic flows of negatively curved surfaces).
Nevertheless, the metric should be C*°, if it is just C?, and thus the
flow is as in Theorem 1 above (this is the Ghys classification of Anosov
flows with smooth stable and unstable distributions (see §2) ).

5) Isometry groups. One may easily deduce from our results (see
Theorem 2 below) that if the isometry group of a compact Lorentz 3-
manifold is not discrete (i.e., noncountable), then it has finitely many
components, and further the identity component, if noncompact, is iso-
morphic to R or PSL(2,R) (all this, up to finite covers). In fact, our
motivation in studying isometric flows on compact Lorentz manifolds
was an attempt to understand the isometry groups of such manifolds,
following the point of view of Gromov’s theory on rigid transformation
groups [7] (although we do not use here results from this theory). For
known results on this field, one usually works with some hypothesis deal-
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ing with the algebraic structure of the isometry group (e.g., it contains
SL(2,R), [18], [7]), or with the topology of the manifold (for instance
it is simply connected as in [3]), or with the geometry of the underlying
manifold, as in [9] where author assumes it to be 3-dimensional and of
constant curvature.

Let us now give more informations about the invariant Lorentz metric
and the differentiable structure of the flow. These may be extracted
from the proof of Theorem 1 or deduced from Theorem 1 itself.

Theorem 2.

1) In the suspension case, all the invariant Lorentz metrics are flat
and obtained from an initial metric by multiplying along the direction
of the flow and its orthogonal by some constants.

2) The Killing metric, up to a multiplicative constant, is the only
Lorentz metric of constant (negative) curvature invariant by a Ghys
flow. In particular, an isomorphism between two Ghys flows is an tsom-
etry between their geometric structures.

3) In the case of Ghys flows, the invariant metrics correspond to the
left invariant metrics on PSL(2,R), determined by the scalar products
on the Lie algebra which are furthermore Ad(f!)—invariant, and so in
particular these metrics are locally homogenous. Up to a multiplicative
factor, the space of such scalar products is 1-dimensional.

3.1) In the case of hyberbolic one-parameter groups, these metrics cor-
respond to the multiplication of the Killing metric by different constants
along the flow and its orthogonal .

3.2) In the case of parabolic one-parameter groups, the 1-dimensional
space of the scalar products (up to multiplicative factors) which are
Ad(h*)—invariant gives only 3 isometry types of metrics on PSL(2,R).
Nevertheless in M, these metrics are not (globally) isometric unless M
is homogenous.

4) In the case of suspension flows or Ghys flows with f* hyperbolic,
the flow is (everywhere) spacelike. In the case of Ghys flows, with f*
parabolic, the flow is (everywhere) lightlike.

Theorem 3. Up to finite covers, a Ghys flow is smoothly orbit equiv-
alent to a geodesic or horocyclic flow on a surface of constant curvature.

2. Preliminaries—steps of the proofs

A Lorentz scalar product on a vector space is a nondegenerate sym-
metric bilinear form <, > of signature — + ...+, e.g R"*! endowed with
the quadratic form —dz3+dz? +...+dz2%. A vector u is called spacelike,
timelike or lightlike respectively, according to that < u,u > is >
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0, < 0, or = 0. Sometimes (perhaps for physical reasons) a Lorentz
scalar product is defined to have a signature + — ...— . Nevertheless the
types must not depend on the convention of the signature, and may be
defined (when the dimension is at least 3) in the following way. The set
of lightlike vectors is a cone, called the light cone. It separates the space
into 3 connected components, with two of them opposite. A vector is
timelike if it belongs to one of these opposite components and otherwice
spacelike.

The essential difference between Lorentz and Euclidean scalar prod-
ucts is that in the Lorentz case, the orthogonal ut of a vector u may
contains this vector itself. This exactly happens when the vector is
lightlike. In this case the restriction of the scalar product to u' is posi-
tive (this is why we choose the convention — + ...+ instead of + —...—)
but not definite, with null space Ru. In general u is timelike (resp.
spacelike) if and only if the restriction of the Lorentz scalar product to
ul is positive definite (resp. a Lorentz scalar product).

A Lorentz structure on a manifold M is a smooth field of Lorentz
scalar products of its tangent spaces. Notions of types for vectors or
vector fields tangent to M are defined as in the previous case.

As in the riemannian case, Lorentz metrics give rise to a Levi—Civita
connection. That is a torsion free connection, for which the metric
is parallel. Also, as in the riemannian case, the isometry group of a
Lorentz structure is a Lie group acting smoothly on the manifold. How-
ever, even if M is compact, in contrast with the riemannian case, the
isometry group may not be compact. We shall say, as usual, that a sub-
group G of I'som(M) is equicontinuous if its closure in the group of
homeomorphisms of M is compact. In fact this closure lies in Isom(M).
Thus the closure is a compact Lie group acting smoothly on M. From
our point of view here such G may be said trivial (although preserving
a riemannijan metric and a Lorentz metric together may be sometimes,
restrictive). Given nonequicontinuous groups G, the compactness to-
gether with the invariant geometric structure on M generates a beau-
tiful dynamics that we are trying to understand when dimM = 3 in
this paper. The connection permits to define (parametrized) geodesics,
exactly as in the riemannian case. However the affine parameter for the
geodesics is not so easy to interpret via a distance. Nevertheless, the
geodesics may be directly defined as in the riemannian case as critical
points of a (nonpositive) lagrangian associated to the metric.

A fundamental difference between riemannian and Lorentz manifolds
is that, in contrast to the former ones, for the latter, compactness does
not imply completeness (that is, the definition of geodesics for all time).
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Examples. We refer to [16] for a complete exposition about Lorentz
manifolds of constant curvature. The flat ones which are complete and
simply connected are isometric to the Minkowski space R™!. That is,
R™! endowed with a constant Lorentz scalar product. Let us also recall
that in dimension 3, up to a multiplicative constant, manifolds with con-
stant negative curvature are locally isometric to the group PSL(2,R)
endowed with its Killing form. Other “interesting” examples of homoge-
nous Lorentz spaces will appear in sections 14 and 16.

What we shall really prove in this article, is the following result which
implies Theorem 1.

Theorem 0. Let (M, <,>) be a compact Lorentz 3—-manifold and ¢*
an isometric flow on it, which is not equicontinuous. Then ezactly one
of the following two possibilities can occur : ’

i) The flow is (everywhere) spacelike and Anosov.
i1) The flow is (everywhere) lightlike and preserves a complete
Lorentz metric of constant negative curvature on M.

Let us now deduce Theorem 1 from Theorem 0 (see also §13). In the
case i), the stable and the unstable directions are just the orthogonal
isotropic directions of the the flow. They are in particular smooth.
Hence by [4], the flow is isomorphic to a suspension of a linear hyperbolic
diffeomorphism on a torus or to a Ghys flow, with f* hyperbolic.

In the case ii) we apply a result of Kulkarni and Raymond [11], which
states that, up to finite covers (and a multiplicative constant), a compact
complete Lorentz 3—manifold of constant negative curvature is diffeo-
morphic to the unit tangent bundle of a hyperbolic surface. This result
also shows that the holonomy is conjugate to I' = {(vy,¢(v)), v € T'}
where I' € PSL(2,R) is a surface group, and ¢ : I' — PSL(2,R) is
a homomorphism. We know that a lift of the lightlike isometric flow to
the Lorentz space PSL(2,R) centralizes I". This easily implies that T’
is conjugate to a subgroup of PSL(2,R) x {h’, ¢ € R}, where {h'} is
the parabolic one-parameter group defined in the previous section.

Remarks.

1. For our purpose, the classification by E. Ghys of Anosov flows with
smooth distributions may be replaced by an elemantary argument (see
§16).

2. J. Mess [13] proved the completeness of compact Lorentz 3-
manifolds of constant negative curvature. His proof is an adaptation
of the deep Carriére’s proof in the flat case [1] to the more geometri-
cally complicated case of constant negative curvature. Our proof here
when the manifold supports a non equicontinuous isometric flow is quite
elementary.
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Steps of the proof of Theorem 0. We start in §3 by showing
some uniformity results for isometric flows of Lorentz metrics. That is,
the equicontinuity at some point of the derivative of the flow, or even
a subsequence, implies the global equicontinuity of the flow itself. This
is just derived from the Lie group structure for the group of isome-
tries. Next for Lorentz (or just pseudo-riemannian) metrics, even, a
“codimension-one” equicontinuity implies global equicontinuity. From
this we deduce that if our isometric flow (M, ¢*) is nonequicontinuous,
then it is nowhere timelike. We further prove in §4 that if it is some-
where spacelike, then it is everywhere spacelike, and is thus of Anosov
type.

The remaining case is then when the flow is (everywhere) lightlike.
In fact all the sections from 5 to 15 deal with it. The length of the proof
in contrast with the spacelike case may be understood by the absence
of general methods or principles for non-hyperbolic dynamical systems.
We mean by this that for example, completeness, or nullity for some
invariant tensors, are formally derived from the hyperbolicity, but this
requires more analysis in the non-hyperbolic case. So in §5, we define
adapted basis in which the derivative cocycle has a nice unipotent form.
This implies (§11) that an invariant quadratic form, is not necessarily
trivial in the sense that it is proportional to the metric, but has a special
form (with respect to the metric). In particular, up to a multiplicative
constant, the space of such invariant forms is 1-dimensional. We apply
this to the Ricci tensor. In dimension 3 (and also 2 of course) the
Ricci curvature determines the curvature tensor and so also the sectional
curvature. In particular if it is proportional to the metric, i.e., M is
Einstein, then the metric is of constant curvature, and we are done.
If not, we consider this Ricci tensor itself as a metric and consider its
Ricei curvature. Of course, all these lie in our 1-dimensional space of
invariant quadratic forms. We may hope that this process, which is
a very elementary version of the so called Ricci flow (for riemannian
manifolds), converges to giving a fixed point which is thus an invariant
Einstein metric. This program works more or less as described above,
but requires a lot of preparations between §6 and §10. A principal
ingredient for this study was the 2-plane field orthogonal to the flow (it
contains the flow itself since it is lightlike). It is integrable with totally
geodesic leaves. We may then consider the restriction of the Levi-Civita
connexion to the leaves. We prove that it is locally symmetric and so
completely describe it...
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3. Uniformity

Let (M, <>) be a compact Lorentz manifold, endowed with an aux-
iliary riemannian norm, denoted by | |.

Proposition 3.1. Let f; be a sequence of isometries of (M, <>). If
for some point x, D, f; are bounded (i.e., |D,fi] < ¢ for some constant
c), then the sequence f; is (uniformly) equicontinuous (i.e., |Df;| < C
for some constant C) .

Proof. This follows from the construction of the Lie group structure
of the isometry group of M. Indeed let G be this group (endowed with
the uniform topology), and R(M) be the bundle of linear frames of M.
Fix 7, a such frame for T, M, and consider the evaluation map

e;:G— R(M); e (f)=D.f(rz).

Then by the construction of the Lie group structure of G, e, is a proper
embedding. Our condition ensures that the images e, (f;) lie in a com-
pact subset of R(M). Hence the sequence f; is in a compact subset of
G.

We also have the following stronger statement which follows from the
continuity of the evaluation map e, (with respect to z and r,) .

Proposition 3.2. If a sequence of isometries f; is such that Dy, f;
are bounded for some sequence x;, then f; is equicontinuous.

Corollary 3.3. Let ¢* be an isometric flow of (M, <>). If for some
point z, a subsequence ¢* is equicontinuous at z, then ¢* is equicontin-
UOUus.

Proof. Let L be the closure of the one-parameter group ¢° in the
isometry group G. This is a cylinder T x R*, where T is a torus, and ¢*
is a dense one-parameter group inside (i.e., a dense geodesic in affine ge-
ometric terms). But this is possible exactly when L = Ror L = T . Our
hypothesis and the proposition above imply that ¢* is equicontinuous
and hence L is a torus.

Remark 3.4. The above facts extend to compact manifolds equiped
with a structure of an affine connection (e. g. a pseudo-riemannian
metric).

Corollary 3.5. If an isometric flow ¢' is somewhere timelike, then
1t 15 equicontinuous.

Proof. Let = be a point where X(z) = % is timelike. Since ¢* is
volume preserving and the set of timelike points is open, we may assume
z to be recurrent. Let ¢; — oo be such that z; = ¢*z tends to z. For any
timelike point y, we transform the Lorentz product into a positive scalar
product, in a canonical way, by only changing the sign along X (thus
for the new positive scalar product X+ is still orthogonal to X and is
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endowed with the initial scalar product). The timelike condition exactly
allows that transformation. Obviously the flow preserves the riemannian
metric (defined only in an open subset of M). Now the equicontinuity of
D¢ follows by evaluating at a compact neighbourhood of z containing
the z;. Hence the above corollary gives the equicontinuity of ¢*.

Proposition 3.6. Let f; be a sequence of isometries of (M, <,>).
Assume that for some x and some hyperplane H C T, M, the restriction
of the D, f; to H is equicontinuous (that is there are constants ¢ and C
such that clu| < |D,fi(u)| < Clul|, if u € H, where | | in an auziliary
norm). Then the sequence f; is equicontinuous.

Proof. By 3.1, we have to prove that the sequence is equicontinuous
at z. Next, we transform the problem to a linear one, by composing
the f; with isometric identifications between T%,,)M and T, M. This
preserves the equicontinuity condition as M is compact. Therefore we
think of the f; as linear isometries of the Minkowski space R™!(n+1 =
dim M). By our equicontinuity hypothesis, we may assume that f;|H
converge to a linear injection f : H — R™!. Let a;,--- ,a, be a basis
of H and b; = f(a;), which span an hyperplane H'.

If H is non degenerate, that is det(< a;,a; >;;) # 0, then the same
is true for H' because < b;,b; >=< a;,a; > . We complete {as, - ,a,}
to a basis of R™! by adding a unitary vector a,,; orthogonal to H :
< @py1y0ny1 >= 1 and < ag,a,41 >= 0, for i < n. Note that this
system of equations has exactly a,,; and —a,; as solutions. Let b,
be a vector associated in the same way to {b;,---,b,}. We see that
fi(any1) has exactly two possible limits, b, ; or —b,1, and therefore f;
is equicontinuous in this case.

Assume now that H is degenerate, say < a;,a; >=0for 1 <k < n.
Define a,,,; by the following equations : < a,41,81 >=1,< @py1,0, >=
Ofor2 <k <n,and < any1,0,,1 >= ¢, where ¢ is an arbitrary constant
(for example 0). To solve this system consider P the 2-plane orthogonal
to the subspace generated by {as, - ,a,}. The metric is definite in
this last subspace and so is Lorentzian in P. Hence the remaining two
equations < a,y1,¢; >= 1 and < a,41,a,y1 >= c¢ have exactly one
solution. Indeed the solution of the first one is a one-dimensional affine
subspace, {v + ta;,t € R}. Thus the second equation is < v,v > +t <
v,a1 > +t? < a;,a; >=<v,v > +t = ¢, and therefore ¢ is unique.

Now as in the nondegenerate case, we see that f;(a,y;) tends to the
solution b,.; (for the same constant ¢). Hence f; is equicontinuous in
every case.
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4. The spacelike case

Proposition 4.1. Let (M,<>) be a compact Lorentz 3—manifold
and ¢ an isometric flow. Assume ¢' to be nonequicontinuous and
spacelike at some point, that is for some point x4, < X(zo), X (o) >
is positive, where X is the infinitesimal generator of ¢*. Then ¢ is ev-
erywhere spacelike. In fact < X, X > is constant and in particular X
is nonsingular.

Proof. Consider a small transversal 7 to X at z,. It has an holon-
omy invariant Lorentz metric because X is Killing and spacelike. The
function f(z) =< X(z), X(z) > is ¢'-invariant and so determines an
holonomy invariant function on 7, also denoted by f. Assume it is non-
constant and choose 7 so small that its levels determine a trivial foliation
in 7. As a Lorentz 2—manifold, 7 has two isotropic foliations. We may
assume that at least one of them, say L, is transverse to the levels of f.
This determines (but not uniquely) a coordinates system {(a,b)} for 7,
with the levels of a (resp. b) corresponding to £ (resp. the levels of f).

We may assume that z; is recurrent and projects to yo € 7. Thus
there are holonomy elements (Poincaré return maps) v; such that v;(yo)
— Yo, a8 ¢ = 0o. But the holonomy respects each level of f, and also £
(but globally). Thus each «y; has (in its domain of definition) the form
vi(a,b) = (6;(a),b). Hence D, ~; are equicontinuous along the tangent
space of the level of f containing #,. This means in M that the derivates
of the associated isometries ¢* are equicontinuous on the hyperplane,
tangent to the level of f (defined on M) at zo.

Therefore, from 3.6 and 3.3, ¢* is equicontinuous, which contradicts
our hypothesis.

This means that f is locally constant in the set of spacelike points.
Let U be the connected component of z, in this set. Then it is the same
as the component of zy in the set {z/f(z) = f(zo)}. Hence it is open
and closed. This proves the proposition as we tacitly assume that M is
connected.

Proposition 4.2. Under the conditions of the proposition above the
flow ¢* is Anosov.

Proof. By 4.1, X is everywhere spacelike. By passing if neces-
sary to a finite cover, we may assume that the two isotropic direc-
tions in X are oriented by two smooth vector fields Y and Z. By
¢*-invariance of these isotropic directions, we may write D, ¢*(Y (z)) =
a(z,t)Y (¢(z)) and D,¢*(Z(z)) = b(=, t)Z(¢*z). We now prove that for
any z, the orbit {D,¢*(Y (z)),t € R} is not bounded in TM. The con-
trary means a(z,t) < a, for some real a. By the volume preserving prop-
erty, a(z,t)b(z,t) = 1. If a(z, t) stays > a’ > 0 for a sequence ¢,, tending
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to +00 or —oo, then D, ¢** is equicontinuous and so by 3.3, the flow itself
is equicontinuous, which contradicts our hypothesis. It then follows that
a(z,t) — 0, when t - +00. Thus by continuity of ¢ — a(z, t) there are t,
and ¢;, tending to +oo such that a(z, —t,) = a(z, t)). Applying the cocy-
cle property for a at z, = ¢z, we get a(zn, t,+1t,) = a(z, t], }a(z,, tn)-
But a(z,,t,)a(z, —t,) = 1, and hence a(z,,t, +1t,) =1

Hence b(z,,t, + t.) = 1, and consequently D, ¢~t% is equicon-
tinuous. Proposition 3.2 implies then that ¢* is equicontinuous (since
t, + t!, — o00), which contradicts our assumption. In the same way
b(z,t) is not bounded and hence the orbit of any nonzero vector in X+
by the tangent flow D¢* is not bounded. This means by definition that
¢' is quasi-Anosov [12]. But in dimension 3, or in general for volume
preserving flows, quasi-Anosov implies Anosov.

5. The lightlike case - The derivative cocycle

By 3.5 and 4.1, a nonequicontinuous Killing field which is somewhere
lightlike, is everywhere lightlike. We assume that it is nonsingular for
the moment. Thus the orthogonal X+ is a 2—plane field, containing X
itself, and is obviously preserved by ¢t.

Adapted basis. We may assume X~ to be orientable, and then
choose a unitary vector field Y in X+, so that < X,Y >= 0 and <
Y,Y >= 1. Note that Y is by no means unique but once chosen, and
determines an unique vector field Z (not lying in X*) such that <
X, Z>=1,<Y,Z >=0and < Z,Z >= 0. To see this, observe that
Y is spacelike and hence Y+ is lorentzian. Thus Y+ possesses a second
isotropic direction other than that of X. Therefore Z is uniquely defined
by the auxiliary equation < X, Z >= 1. We shall call an adapted basis
a basis field {X,Y, Z} like above. Such a basis is not unique, and we
shall see later how to add locally some differential relations, together
with the above algebraic ones, among the vector fields X,Y and Z.

Consider now in R?® endowed with its canonical basis {e;, ez, e3}, the
lorentzian scalar product <>:< e;,e; >=< €1, >=< €3,e3 >=0 and
< eg,e9 >=< ey,e3 >=1.

For any z, let 4, : T, M — R3 be the isomorphism sending the frame
{X(z),Y (z), Z(z)} to the canonical basis {e;, ez, e3}. By definition, this
establishes an isometry between the lorentzian scalar products.

The derivative cocycle ¢(t, z) of ¢* is the matrix of D,¢* with respect
to the given basis, i.e., ¢(t,z) = i4¢(z)D.$';". The fact that ¢* is iso-
metric translates to that ¢(t,z) respects the lorentzian scalar product
of R3.
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Proposition 5.1. The derivative cocycle has the form :

1 T(,z) =T
ctr)=10 1 =Tz |,
0 0 1

where T : R x M — R is an additive cocycle, which uniformly (in x)
goes to oo when t — Loo.

Proof. Note that the fact that D¢’ preserves X and X+, means that
¢(t, z) preserves e; and the plane generated by e; and e,. If c(t,z)e; =
ae; + aey, then we write < ae, + aej,ae; + ae; >=< ey3,e5 >= 1,
and get o = 1. Since det(c(¢,z)) = 1, we have the unipotent form for
c(t, z). To obtain the formula, we now just write : < c(t, z)e,, c(t,z)ez >
=< e3,e3 >= 0. Next, since ¢' is supposed to be nonequicontinuous,
from 3.2 it is seen that T'(¢,z) goes uniformly to co when ¢t — +oo.

Remark 5.2. The cocycle property allows us to prove that for
some positive constant «,T(t,z)/t > «. Furthermore, by the subad-
ditive ergodic theorem, for almost every z, there is 3, > « such that
lim; ;0 T(¢t,z)/t = B,. But we can see that only in the homogeneous
case, one can have T'(t,z) = Bt, that is, ¢(¢, z) is a one-parameter group
of matrices.

6. The asymptotic foliation

Proposition 6.1. The 2—plane field X+ is integrable. The tangent
foliation F, called the asymptotic foliation of X, has its leaves geodesic,
that is, a geodesic tangent somewhere to o leaf is everywhere tangent to
it.

Proof. The integrability follows from the fact that ¢* preserves X .
Indeed this means that for Y’ tangent to X*,[X,Y’] belongs to X* .
But (locally) X+ is spanned by X and any Y’ transverse to X.

To see that the leaves of the generated asymptotic foliation F are
geodesic, note the following.

Fact 6.2. For an adapted basis {X,Y, Z} we can assume that [X,Y] =
0 in a neighbourhood of a given fired point.

Proof. Indeed, we choose Y in a small 7 transversal to X and set
Y (¢'(z)) = D,¢'(Y(z)) in a neighbourhood of 7, for z € 7. Note that
this still satisfies the condition Y € X+ and < Y,Y >= 1 because ¢' is
isometric and respects X+. Next we extend Y everywhere by imposing
our two algebraic conditions Y € X+ and < Y,Y >= 1, (but obviously
not the differential condition [X,Y] = 0).



KILLING FIELDS IN COMPACT LORENTZ 3-MANIFOLDS 871

Now, we return to the proof of the proposition, and let V be the
Levi-Civita connection of the Lorentz structure. Write < X, X >= 0,
sothat 0 = X < X, X >=2< VxX,X > . Hence VxX € X+, In the
same way Vy X € X1, and by the above fact, we also have VxY € X*.
Now < X,Y >=0, implies :

0=Y<X,)Y> = <V X, Y >+<X,VyY >
= <VxY)V >4+ <X,VyY >,

since [X,Y] = 0. Bt < VY >=1,500 =X <Y)Y >= 2 <
VxY,Y >. We thus obtain < X,VyY >= 0, that is VyY € X+
Therefore X * is invariant by V. This is equivalent to say that the leaves
of F are geodesic.

Before investigating the structure of the asymptotic foliation, let us
(locally) “normalize” further our adapted basis, in a manner very helpful
for the calculations throughout this paper (an additional normalization
will appear in 14.3).

Proposition 6.3. For an adapted basis {X,Y,Z}, in a neighbour-
hood of a given point, we can assume that [X,Y] = [X,Z] = 0, and
further that VyY = 0.

Proof. As above, for the two first differential relations, we just take
a transversal 7 to X and define Y and Z on 7 in any fashion such that
they satisfy the algebraic constraints < X,Y >= 0,< Y)Y >= 1,<
Y, Z>=0=<Z,Z >and < X,Z >= 1. Next we define Y and Z in a
neighbourhood of 7, by taking their images by ¢*. They still satisfy the
algebraic relations as ¢* is an isometric flow, and therefore by definition
[X,Y] = [X,Z] = 0. If we want further to have the relation VyY =0
(locally), then we choose T to be a ruled surface. That is 7 is the union
of geodesics in the leaves of F, and Y is tangent to these geodesics.
More precisely, we consider a curve ¢(z),z € [0,1] transverse to F, and
an unitary vector u(z) tangent at ¢(z) to the leaf F,). Then 7 is the
union of pieces of the geodesics determined by u(z),z € [0,1], and Y is
the tangent vector field to these geodesics. Therefore VyY = 0 in 7,
and the same is true for the above extension of Y in a neighbourhood
of 7.

Consider now the trace of the Lorentz structure in the tangent bundle
of a leaf. This is a field of positive, but degenerate quadratic forms.
Such an object is sometimes called a sub-riemannian structure, if it has
a constant index of nullity. This notion may be helpfull as (for example)
it permits to quantify the notion of (transversally) riemannian flow in
the following way.

Definition 6.4. A 1l-dimensional foliation D is riemannian if there
is a sub-riemannian structure (in the supporting manifold) with nullity
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space the tangent space T'D which is invariant by any parametrization
of D.

Therefore the foliation determined by the orbits of ¢* is leafwise rie-
mannian. One important property of riemannian foliations is that they
are, after passing to a suitable Steifel bundle, transversaly parallelisable
[14]. This means in our (2—dimensional) case :

Proposition 6.5. Let U? be the flow of the vector field Y. Then V!
sends orbits of X into orbits of X (without preserving the parameter).

Proof. This may be seen geometrically by considering in a given leaf,
the semi length structure determined by <> . Observe that if z,y,2',y’
are points in the leaf, z and y are in the same ¢*-orbit, and ¢ and ¢’
are curves joining z and z’ to y and y’ respectively, then length (c) =
length (') if and only if 2’ and 3’ are in the same ¢*-orbit. This follows
from our above definition which states that any reparametrization of ¢*
preserves < > . Now apply this to the orbits of ¥?, which are in fact
parametrized by arc-length : length{¥*(z),0 <t <T}=T.

Proposition 6.6. A leaf of F is homeomorphic to a plane (R?), a
cylinder (R x S') or a torus (S* x S*).

Proof.  This follows from the classification by E. Ghys [5] of the
codimension-one geodesic foliations of complete riemannian manifolds.
But one may prove this in an elementary way for dimension 2. Take a
leaf F' that we assume to be simply connected, and denote by D the
foliation determined by ¢. Observe that an orbit of ¥ cuts all the leaves
of D. Indeed the subsets U{¥*(D),t € R}, for D a leaf of D, give
a partition of F into open sets, and hence must be trivial. Therefore
U? acts transitively on the quotient space F/D, which must then be
homeomorphic to R. Let now I be a group of homeomorphisms of F
preserving ¢* and W' It acts by translation on F/D, and so we get
a homomorphism A : '’ — R. If h is injective, then T" is abelian. In
general, ker(h) contains elements which fix individually each leaf of D.
Since they commute with ¥t they acts by translations on any fixed leaf
D. Therefore ker(h) is abelian. In any case T is not free with more than
one generator.

Next for a leaf which is not simply connected, we apply the above
discussion to its universal cover, and deduce that its fundamental group
is not free unless it is cyclic. Hence if open, this leaf must be a plane
or a cylinder. On the other hand a compact leaf is a torus because it
supports a non-singular vector field.
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7. Partial ergodicity

Proposition 7.1. Let f : M — R be a smooth ¢*-invariant function.
Then f is leafwise constant, i.e., f is constant in each leaf.
Proof. If not, the following open invariant set in nonempty:

U = {z € M|kerd,f does not contain X*(z)}.

Therefore for z € U, kerd, f is a lorentzian plane. In particular the sec-
ond isotropic direction (other than that of X') determines a 1—dimensio-
nal invariant sub-bundle along /. To finish the proof, we use the fol-
lowing lemma, which follows immediatly from the derivative cocycle
formula (5.1).

Lemma 7.2. Let E — U be an invariant continuous 1—sub-bundle
along an invariant subset U. Then for any recurrent point z in U, E(x)
coincides with the direction of X (z), i.e., E(z) = R- X(x).

8. Properties of the connection along the leaves

We study now the Levi-Civita connection restricted to the leaves.

Lemma 8.1. We have VxX = 0, that is, the orbits t — ¢'(z) are
affinely parametrized geodesics.

Proof.  Recall that the Killing property of X is expressed by the
following infinitesimal condition : for any z, the covariant derivative
mapu € T,M — V, X € T, M is skew symmetric. In particular for any
vector field T, < Vx X, T > + < X,VsX >=0. But < X, VX >=
(T < X,X >)/2 =0, since < X,X >= 0. Therefore < VxX,T >=0
for any T, that is Vx X =0.

Lemma 8.2. There is a ¢'-invariant function a : M — R, such that
VYX = agX.

Proof. We first note that Vy X does not depend on the choice of
Y. That is if Y’ is another unitary vector field tangent to X+, with
the same orientation as Y, then Vy. X = VyX. Indeed such Y’ has
the form Y’ = Y + fX for some function f. This implies by the pre-
ceding lemma that Vy X = V. X. It follows that this vector field is
@t-invariant. Moreover, we may assume (6.2) that [X,Y] = 0 and
hence < Vy X,Y >=< VxY,Y >= (X <Y,Y >)/2 = 0. Therefore
Vy X = aX, for some function a, necessarily invariant.

Proposition 8.3. Let R be the curvature tensor of (M, <>). Then
R(X,Y)X = 0 and R(X,Y)Y = 4X for some ¢'-invariant function
v, which is thus leafwise constant by partial ergodicity (7.1). Moreover,
v = —d%
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Proof. Assume [X,Y] = 0. Then R(X,Y)X = VxVyX-VyVxX =
Vx(aX) = 0, because a is ¢'-invariant. This proves the first for-
mula. For the second, as in the proof of the above lemma we note
that R(X,Y)Y does not depend upon the choice of Y. Indeed for
Y' =Y + fX, from the first equality R(X,Y)fX =0 we get R(X,Y +
FX)Y + fX) = R(X,Y)Y. Next, observe that < R(X,Y)Y,Y >= 0,
and hence R(X,Y)Y = X for some ¢'-invariant function y. Now by
6.3, we may assume VyY = 0, and by partial ergodicity Y (a) = 0, since
a is ¢'-invariant. A direct calculation gives v = —a?.

Proposition 8.4. The restriction of the connection V on any leaf
of F 1s locally symmetric.

Proof. Fix a leaf F, and continue to denote the restriction of the
connection and the curvature on it by V and R. By partial ergodicity,
VyX = aX and R(X,Y)Y = vX, where a and ~y are some constants.
Let VR be the covariant derivative of R. Then

VR(A,B,C,D) =V 4(R(B,C)D) — R(V4B,C)D
— R(B,V4C)D — R(B,C)V4D.

Each of the vectors A, B,C,D will be X or Y. We assume 0 = [X,Y],
and recall our formulas : VxX = 0,Vy X = aX,R(X,Y)X = 0 and
R(X,Y)Y =~X.

Fact 8.5. If2 elements from {B,C, D} equal X, then VR(A, B,C, D)
= 0.

Proof. Indeed in this case all the derivatives V4B,V ,C and V4D
are proportional to X. Hence each term is proportional to R(X,Y )X
and so vanishes.

Fact 8.6. If A= X and one element from {B,C, D} also equals X,
then VR(A, B,C,D) = 0.

Proof. Indeed in this case VR(X,B,C,D) = VxR(B,C)D
— R(B,C)VxD. In every case R(B,C)D is collinear with X, and so
VxR(B,C)D =0.If D =Y then B or C equals X. But VxD = aX
and therefore R(B,C)VxD is a multiple of R(X,Y )X which is 0.

Now the remaining cases are when 3 elements from {4, B, C, D} equal
Y.

1) VR(X,Y,Y,Y) =Vx(R(Y,Y)Y) — R(VxY,Y)Y
~ R(Y,VxY)Y — R(Y,Y)VxY
=0 — R(aX,Y)Y — R(Y,aX)Y — 0
=0.
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By 6.3, we may assume VY = (.

2) VR(Y,X,Y,Y) =VyR(X,Y)Y — R(VyX,Y)Y
—R(X,VyY)Y — R(X,Y)Vy X
=VyvX — R(aX,Y)Y —0— R(X,Y)aX
=ayX —yaX =0.

The same for VR(Y,Y, X, Y).

3) VR(Y,Y,Y,X) =VyR(Y,Y)X
— R(VyY,Y)X — R(Y,VyY)X — R(Y,Y)Vy X
=0-0-0—0=0.

9. Symmetric connections in dimension 2

Let AG be the group of orientation preserving affine transformations
of the real line. It is generated by the homotheties {g*}, ¢*(z) = €'z, and
translations {h*}, htz = = + t. We have g~*h*g! = h*¢”". Its Lie algebra
is generated by the two corresponding infinitesimal generators G' and
H, satisfying [G, H] = —H. As any Lie group, AG has a canonical bi-
invariant, torsion free, complete and locally symmetric connection. It
is defined in the Lie algebra level by : V,v = 1[u,v]. Its curvature
tensor is given by R(u,v)v = %[v,[u,v]]. Therefore we get in the case
of AG : R(G,H)H = 0 and R(H,G)G = ZH. This looks like the
situation of our leaves when putting H = X and G =Y, at least for
v = —a® = Z*. Our goal in this section is in fact to prove that in
general, if a # 0, the leaves are locally affinely isomorphic to AG. For
this, note first that only the sign of v has sense. The exact value of vy
deals with the sub-riemannian metric, or when fixing the vector field Y;
if we change Y (or G) by a multiple, we can rescale v to —1.

To understand the structure of AG, we represent it in the upper half-
plane (like the 2-hyperbolic space) as follows : gth® € AG — (s,¢€t) €
R x R* = H*. The geodesics in AG are left (or right) translations
of one-parameter groups (this is the case for any group). They are
mapped in H* to (nonparametrized) straight lines. This means that
the canonical connection V, and the flat connection V' (inherited from
R?) are projectively equivalent.

Note that V'’ is also a bi-invariant connection on AG. This may be
seen in the multiplication law of AG: any fixed left or right translation
is affine.
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The isometry group for V is generated by left and right translations.
It is then AG x AG acting on AG by (f1, f)f = f1ff5*

One verifies on the other hand that the isometry group for V', i.e.,
the group of affine diffeomorphisms preserving the upper half plane H™,
is isomorphic to the direct product AG x AG.

Remark 9.1. Note that in order for a connection to be bi-invariant,
it suffices that it is invariant under AG x {h*,t € R} or {h!,t € R} x AG.
Furthermore the bi-invariant connection on AG are exactly the convex
combinations aV + (1 — )V’ for a € [0,1]. All of them are projectively
flat and satisfy the curvature formulas: R(G, H)H = 0 and R(H,G)G =
~v(a)G. But none of them other than V is complete, and only V and V'
are locally symmetric.

Proposition 9.2. Let F be a 2—manifold endowed with a locally
symmetric connection V and two nonsingular vector fields X and Y
such that R(Y, X)X = —R(X,Y)X =0 and R(X,Y)Y = —a’X. with
a # 0. Then F is locally isomorphic to AG with its canonical connection
(observe that we do not assume that X and Y are Killing fields and that
from the Remark above, the local symmetry property is necessary).

Proof. Recall that for a locally symmetric connection any tangent
vector u determines a local transvection flow along the geodesic that it
determines. If z(¢) is this geodesic, then the transvection flow is defined
by T = Su(1/2)Sz(0), Where S, is the symmetry around z(t). Thus T
is connection preserving, and preserves the geodesic determined by u,
and DT! equals the parallel transport along z(¢).

Observe that we have a well defined sub-riemannian structure <, >
by BR(X,u)u =< u,u > X; its kernel is just the direction of X. It is
preserved by affine isometries since this is so for the curvature. In par-
ticular, since any geodesic is the orbit of a transvection one-parameter
group, this geodesic is everywhere lightlike whence it is somewhere light-
like. That is the orbits of X are geodesic. More precisely let A* be
the tranvection flow determined by some X (z,), and A the associated
Killing field. Then A is collinear with X, that is the orbits of A are
exactly (all) the lightlike geodesics. Indeed these geodesics may be de-
fined as sets of points with some fixed semi-distance from the orbit of
X (o). Therefore they are (individually) preserved by A*.

Let y(t) be a geodesic with y(0) = z and < y'(0),y'(0) >= 1. Let B
be the vector field extending this geodesic defined by taking its images
by AY, that is, [A, B] = 0. The orbits of B are unitary geodesics since
A is a Killing field.

We now show that all the covariant derivatives determined by A and
B are uniquely derived from our conditions. Therefore the analogous
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construction for AG yields an affine isomorphism; in other words, with
respect to the coordinnates system defined by A an B, the covariant
derivatives laws are the same as for AG.

First of all, recall that on locally symmetric spaces, isometry-invariant
tensors are parallel (that is because there are enough transvections flows
inducing parallel transport along given geodesics). This means for our
sub-riemannian metric that we have the usual derivation formula: C <
D, E>=<VeD,E>+<C,VcFE >.

Let us prove that V4A = 0. Since the orbits of A are geodesic, we
have V 4A = bA for some function b, which is invariant by A? since this
flow preserves both A and the connection V.

Since < B, B >=1, we have < V4B, B >= 0 and therefore VB =
Vg A = cA for some function ¢ which, for the same reasons as above, is
At-invariant.

We have

0= R(B,A)A = VBVAA - VAVBA = VB(bA) - VA(CA)
= B(b)A + bcA — cbA = B(b)A.

Thus B(b) = 0, that is, b is B-invariant. But b = 0 along the A-orbit of
Ty by the definition of transvection flows. It then follows that b equals
0 everywhere, that is V4A = 0.

We consider now

R(A,B)B = VAVBB + VBVAB = —(IZA.

We know by the construction of B that VgB = 0, so that Vg(cA) =
B(c)A + c®>A = —a®A4, that is B(c) + ¢ = —a®. As in the case of b,
initially (i.e., along the A-orbit of z,) ¢ equals 0. Therefore ¢ is well
defined from the differential equation B(c)+c* = —a?. To finish, observe
that we may rescale the constant a to be the same as for AG by just
replacing Y by some constant multiple aY.

Proposition 9.3. The leaves of F are complete.

Proof. Let F be a leaf of F. It is modeled on AG for a > 0 and on R?
if a = 0. The proof for the two cases is the same. Let us, to fix notation,
consider the case of AG. To simplify notation let us suppose that F is
simply connected. Thus we have a developping map d: F — AG. Any
connection preserving flow on F is the pull-back of such a flow on AG.
In particular, we have

Fact 9.4. The restriction of ¢* to F projects to a flow k* on AG. By
the curvature formula (in F' and AG), the infinitesimal generator K is
collinear with H. So the ezpression of k' is k! : x — h*zh, for some
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constants b and c. In particular the orbits of K (like those of H) in the
upper half plane model are horizontal lines.

Denote by D and D’ the foliation in F and AG defined respectively
by the orbits of ¢* and k* (or A'). From the above fact, we deduce
that for any orbit D € D, the developping map is a homeomorphism
from a strip (i.e., a connected D—invariant subset) containing D to an
analogous one around d(D).

Fix Dy and let D, be the leaf at distance ¢ from Dy, in the sense of
the sub-riemannian metric, and on a given side, say the positive one
determined by the orientation. Such a leaf exists since the flow T* (of
the vector field Y) is complete in the compact manifold M. Let yo € Dy
and u € T, F' a unit vector so that < u,u >= 1. It determines a geodesic
y(t) defined in a maximal interval [0, ¢[. Note that y(t) € D;, and hence
in order to prove that this geodesic is complete, i.e., € = +o00, it suffices
to show that it cuts all the leaves D;, for ¢ > 0. But if not y(¢) should
accumulate to D,, (note that by the fact that y(t) belongs to D;, our
geodesic cuts each D; at most one time).

Now apply the developping map d to get a (nonhorizontal) half-line
which is contained in a strip around d(D,); impossible.

10. Compact leaves and “differentiable ergodicity”

Proposition 10.1. The foliation F has no compact leaves.

Proof. We prove that if F is a toral leaf, then the restriction of ¢*
to F' is equicontinuous. Indeed, ¥ = AG/I', where I' is a subgroup of
AG x AG isomorphic to Z @ Z and acting freely, dicontinuously and
uniformly on AG. Moreover I" must centralise the one-parameter group
kt = (kP het) (see 9.4). Denote by p; and p, the projections AGx AG —
AG onto the first and the second factors, respectively. We recall that in
AG, the centralizer of {h*} is exactly {h*}. Hence if both b and ¢ are non
zero, I should be contained in {(hf, k%), (¢,s) € R?)}. But this group
preserves the foliation D' of AG (notation from the proof of 9.4), and
acts nonuniformly. Therefore we may assume for example b = 0, and
p1(T) to be nontrivial in AG. As an abelian subgroup p; (I') is contained
in a one-parameter group (I¢,1). Thus this I* centralizes I" and so defines
a flow ¥* on F = AG/T, transverse to ¢*. Futhermore this two flows in
F commute, since this is the case for the one-parameter groups (%, 1)
and (1, h¢?).

To get a contradiction, we just apply 7.2. Therefore F has no compact
leaves.

Corollary 10.2. Let f : M — R be a smooth ¢*-invariant func-
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tion. Then f is constant (by analogy with the usual notion of ergodicity,
we call this property the differentiable ergodicity of ¢*; see for instance
[17]).

Proof. By 7.1, f is constant along the leaves of F. Hence, if non-
constant, a generic level of f contains a compact leaf. But this does not
exist by the proposition above.

11. Invariant quadratic forms

Let ¢ : TM x TM — R be a symmetric bilinear form. With the
help of an adapted basis {X,Y, Z} and identification with (R?',<>), ¢
~ is determined by a map x € M — A, where A; is a 3 x 3 matrix,

symmetric with respect to <> (i.e., < u,A,(v) >=< A (u),v > ).
Thus g, (u,v) =< u,Azv > .

Proposition 11.1. The set of symmetric bilinear ¢*-invariant forms
are exactly those given by constant matrices of the form :

A0 «
A=10 X 0},
0 0 X

where A and « are constants.
Proof. The invariance condition for g, means (c(¢,z)) ' Azc(t,z) =
Ayt (), where c(t, z) is the derivative cocycle. Let

1t t3/2 01 0
Bt=10 1 -t|, b=10 0 —-1].
00 1 00 0

Then B* = exptb, and c(t,z) = expT'(t,z)b, where T(t,z) is a real
additive cocycle tending to co when ¢t — +o0 (§5).

Let B! act by conjugation in the space Mjy3 of 3 x 3 matrices.

Claim. A recurrent matrix A for this action is a fixed point. That
is A commutes with B¢,

Proof. Since b is nilpotent, we have B* = 1 + tb + %bz. Therefore
B 'AB! = (1 —tb+ L) A(1 +th+ £b?). If this polynomial takes values
near A, for t large, then all its nonconstant coefficients must vanish.
This means that A commutes with b, and so with B?.

Now by continuity of the map ¢ — A, if = is recurrent for the
dynamical system (M, ¢?), then A, is recurrent for the adjoint action
of Bt. Therefore A, commutes with ¢(¢,z) and A, = Ay (y). We deduce
from the density of recurrent points that the map z — A, is ¢'-invariant,
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not only as a 2-tensor, but also as a matrix valued function. Thus by
differentiable ergodicity A, equals a constant matrix A.
Next by eigenspaces consideration, we prove, as A commutes with B?

that A has the form
A«
A= (0 A ’y) .
0 0 A

By computation, we find 8 = —+v. Moreover the symmetry property
of A, more precisely < A(ey),es >=< ey, A(ez) >, gives § = . Hence
B =~ =0 and so A has the promissed form.

To finish the proof, we note that conversely any such matrix deter-
mines a ¢i-invariant symmetric bilinear form. For example if A = 1, we
obtain an invariant scalar product which gives the same values as the
old one, in all the cases, but < Z, Z >= «, instead of 0.

12. The Ricci curvature

The Ricci tensor Ricc of M is a ¢'-invariant quadratic form. Thus
by the previous section, it may be expressed by means of a constant
matrix 7{ + dJ, where we set :

100 0 01
I=|01 0]}, J=10 0 0}.
0 01 0 00

We would be happy if it is trivial in the sense that § = 0, i.e., Ricc =
7 <> . That is M is an Einstein manifold. Indeed in dimension 3 this
implies that M is of constant sectional curvature. “Unfortunately” in
general § may be nontrivial. Our method is then to equip M with a
family of metrics <>, obtained by matrices I + a.J, and so to consider
&{(a) as a function of a. Our hope is to get an Einstein metric for some
a.

Recall now [15] that the Levi-Civita connection associated to a pseudo-
riemannian metric <> is given by the following :

2<VyW,T>=V<W,T>+W <T,V>-T<V,W>
- <V, W, T] >+ <W,[T,V] >+ < T,[V,W] >,
where V, W and T are three vector fields.

A one-parameter family of metrics. Consider now the metrics
<u,v >=<u,v+alv)>.
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Fact 12.1. All the scalar products of the basis vectors do not de-
pend on a, except < Z,7Z >, which equals o. More generally, we have
< A,B >,=< A, B >, once A or B is a combination of X andY only
(i.e., tangent to F). Conversely if two vector fields A and A' are such
that for some a # 0 and any vector field B,< A, B >,=< A", B >,
then A equals A' and is tangent to F.

For any fixed a, all the scalar products of our basis are constant in
M. Therefore we have '

Fact 12.2. Let V® be the Levi- Civita connection of <>,. For vector
fields VW, T, each of which is an element of the basis {X,Y,Z}, we
have

2 < VW, T >o=— < V,[W,T] >, + < W, [T, V] >,
(1) , + <T,[V,W]>,.

Corollary 12.3. The connections V° coincides with V = V° on the
leaves of F, that is, VoW = Vy W, whenever V and W are X orY.

Proof. Indeed, in (1), only T may depend on Z, and so in every case
by 12.1, the right-hand side of (1) does not depend on «.

Notation. We consider now an adapted basis (in the sense of <>)
satisfying the conditions of 6.3 in a neighbourhood of some given point.
The only nontrivial bracket is [Y, Z]. Let us write it as

Y,Z] =1X +mY +nZ,

where [, m and n are some functions.
Recall from 8.2 that for some constant a,

(2) VyX =VyY =aX.
Fact 12.4. We have
(3) n = —2a.

Moreover, m = 0 and hence

(4) [Y, X] =X — 2aZ.

Proof. Applying (1) to V=X, W =Y and T = Z gives

2<VxY,Z> = —-<X,[Y,Z]>
= —<X,IX+mY +nZ>

—T.
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By (2) we get n = —2a.
Now apply (1) to V=W =Y and T = Z. Since VyY =0, we get

0 = —<Y[Y,Z]>+<Y,[Z,Y]>
= —2<Y,[Y,Z] >=-2<Y,IX+mY +nZ >
= =2m.

Therefore m = 0.
Fact 12.5.

(5) VeZ = —aY

Proof. Indeed, if we apply (1) to V = X,Z = W and T = X or
T = Z, then we obtain 0 on the right-hand side. Therefore V¢ Z is a
multiple of Y : VxZ = bY. Applying (1) to T =Y yields

20 = 2<VEZY >,=—-<X,[Z2,Y] >,
= <Xv[KZ] Za= N,

which together with (3) implies that b = —a.
Fact 12.6.

(6) VeZ = (I - 20aa)Y.

Proof. By (1) we immediately get < V3Z,Z >,=< V%Z,X >,=0,
and so V$Z = b(a)Y. Again from (1) it follows that

2(a) =< V%Z)Y >, = —<Z,2)Y] >, +<Z,[Y,Z] >,
= 2<2,[Y,Z]>,=2<Z,lX —2aZ >,
= 2(l - 2aa).
Fact 12.7.
(7) V$Z =aaX —aZ.
Proof.
2<VS$Z)Y >, = —<Y,[2,Y]>+<Y,[Y,Z] >

2<Y,[Y,Z] >=0, by (4).
It then follows that V$Z = b(a) X + ¢(a)Z, so that
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2c(a) =2<V$Z,X > = <X,[Y,Z] >
< X,1X — 2aZ >= —2a,
by (4). Hence c(a) = —a. Now
2<V$YZ,Z >,=<2,[2,Y] >+ < Z,[Y,Z] >=0.
Thus
0=2<bla)X —aZ,Z >,=2(b(a) — acr) =0,
which implies (7).
Fact 12.8.

(8) VY =VeZ +[2,Y] = (aa— )X +aZ

Curvature formulas. Let R* be the curvature tensor of <> .
Fact 12.9. Since V* =V on the leaves of F, we have :
R¥*X, V)X = R(X, V)X =0,
R*(X,Y)Y = R(X,Y)Y = —-ad’X,
<RYX,Y),Z>, = <R*X,Y),Z>=—d
<R*(Z,Y)Y,X > = —a’

Fact 12.10. R*(Y,Z2)X = (Y (I) + 4al — 5a%)Y.
Proof.
R*(Y,2)Z =VyV3Z —V3V$Z - V5 22
=VH((l — 200)Y) — (V% (aaX —aZ)) — Vix_2.22
=Y ([ — 2a)Y + (I = 2a0)V$Y — aa(VZX)
+aaVzZ - IVGZ +2aV3Z
=Y ()Y +0+a*aY + a(l — 200)Y +1aY
+ 2a(l — 2a0)Y
=(Y(l) + 4al — 5a*a)Y.

Fact 12.11. R*(X,Z)X = -2a*X.

Proof. R*(X,Z)X =VxVzX —VzVxX =Vx(—aY) = —a*X.
Fact 12.12. R*(X,Z)Z = ~a*’aX + b(a)Y + c(a)Z.

Proof. Indeed,

0=<R*(X,2)Z,Z >o=a(a) + ac(a),
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and

cla) =< R*(X,2)2,X >, = —<R*X,2)X,Z >
= — < -a?X,Z >=ad%.

Hence a(a) = —a’a.

Let now Ricc™ be the Ricci tensor for the metric <>,; that is,
Ricc®(u, u) equals the trace of the linear map A% : v — R*(v, u)u.

Fact 12.13. Ricc®(Z,Z) = (Y (1) + 4al) — 6d*a.

Proof. ~ We have A%(Z) = 0, and the coordinate of A%(Y) with
respect to Y equals < A%(Y),Y >, and therefore < R*(Y,Z)Z,Y >,=
(Y (1) +4al) —5a%a by 12.10. Moreover 12.11 implies that the coordinate
of A%(X) relative to X is —a®a. Thus trace(A%) = (Y (1) +4al) — 6a°c.

Fact 12.4. Ricc®(Y,Y) = —ad’o.

Proof. We show that the coordinate of A% (X)(resp.A$(Z)) relative
to X(resp.Z) is -—a?® For this we wuse the relations
< R¥(X,Y)Y,X >,=0and < R*(X,Y)Y,Z >=< R*(Z,Y)Y, X >,=
—a?.

Combining all these calculations and 11.1 yields

Proposition 12.15. The Ricci curvature of the metric <>, is ob-
tained (from <> and not <>,) by the matriz —2a>I + 6(a)J, where
d(a) = —6a’a + &, and & is a constant.

13. The case a# 0

When a # 0, there is « such that §(a) = —6a’a + 6y = —2d’c
(since 6 # 2); that is, —2a*T + §(a)J = —2a*(I + aJ), and so Ricc” =
~2a? <>, Thus in dimension 3, (M, <>,) has constant negative (sec-
tionnal) curvature _T“z Now to simplify the notation let us suppose that

a = 0, so that our initial metric <> has constant curvature %2— It is
known that after rescaling (multiplicative) constants, (M, <>) is locally
isometric to PSL(2,R), endowed with its Killing form.

Denote by N the universal cover of PSL(2,R) as a Lorentz man-
ifold and by G its universal cover as a group. The isometry group
of N is generated by the left and the right translations which com-
mute, and hence this group is G x G. Therefore our manifold M has
a (G x G, N) structure. Let d : M — N be the developing map, and
Hol : (M) — G x G be the holonomy. The lifting ¢t of ¢* in M is
induced by an isometric low A%, with an infinitesimal generator A. This
Killing field is, like X, lightike in d(V'), and hence everywhere by analyt-
icity. Write A = (4,, 4;) € G xG. Obviously A commutes with each A;,
and also with the holonomy group Hol(m;(M)). If each A; is nontrivial,
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then we get two nontrivial one-parameter groups in M, which commute
with ¢!, being impossible by 7.2 since we assume ¢! nonequicontinuous.
Therefore, we may assume for example that A = (0, 4,), i.e., A* acts
by the right translations on N. From the lightlike character of A, we
deduce that ad(A,) is nilpotent and that its orthogonal space is exactly
its normalizer algebra, which generates a subgroup H C G, isomorphic
to AG.

In fact A* is a parabolic subgroup, so its projection in SL(2,R) is

1 ¢
0 1),t € R}. Let
‘H be the asymptotic foliation of A, that is the left invariant foliation
‘H, = z - H. Note that the geometric structure of M is in fact modeled
on (G x R, N), where the R factor acts as the right translations by Af,

Completeness. Of course d maps F into H. We have already proved
(89)) that the leaves of F are geodesically complete. Therefore d maps
homeomorphically leaves of F into leaves of . Furthermore, for a small
transversal (at some given point) 7 to F, its F— saturation £ is home-
omorphically mapped by d onto its image. Therefore the completeness
problem is reduced to a 1—dimensional one. More precisely, we see that
in order for d to be a homeomorphism onto its image, it is enough to
show that F admits a global transversal, that is, a transversal curve
cutting every leaf (this is equivalent to the fact that M/F is Hausdorff
and hence homeomorphic to R).

conjugate to a one-parameter unipotent group {(

Observe now that for the foliation #, any timelike geodesic is a global
transversal (warning : this can never be the case for lightlike or space-
like geodesics). We first verify this by an example, in the geometric
situation of PSL(2,R) instead of its universal cover N. So PSL(2,R)
may be identified with the unit tangent bundle of the 2—hyperbolic
space H?, and H with the weak horocycle foliation. Then the fibers
of T'H? — H?2, are timelike geodesics which cut exactly once any leaf
of H (they represent in fact the circle at infinity of H?, which is the
space of H—leaves). Observe now that this remains true in the univer-
sal cover. To handle now the case of general timelike (nonparametrised)
geodesics, remark that they are all obtained as images of the previous
ones, by isometries preserving H.

Let ¢(t),t in a maximal interval Je™,e*[, be a timelike geodesic in
M, and  its F—saturation. Then d is a homeomorphism from € onto
d(2). If Q is not all of M, then at least one side of our geodesic (say
when ¢ — €T) approaches a boundary leaf Fy, without cutting it. That
is, for any saturated one-sided neighbourhood V of Fy,c(t) € V for
t > ty. In particular c¢() escapes every compact subset of V. But for
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V' suitably small, this picture translates in the model N, since d is a
homeomorphism on V. We get a timelike half geodesic which escapes
compact sets and stays in a small neighbourhood of a leaf of H. But
the so corresponding complete geodesic can not hit that leaf. This
contradicts the previous discussion, and therefore d is a homeomorphism
onto its image.

Thus M would be geodesically complete if d(M) = N. But if not,
d(M) will have one or two leaf boundary components. Therefore, after,
if necessary, passing to a double cover of M, we may assume that the
holonomy group preserves each boundary component. Assume one of
these leaves is H;, the leaf of the identity element 1. Then its isotropy
group in G xR is exactly H xR (and H is isomorphic to AG). But HxR
acts freely in N\ H,. Therefore the holonomy group Hol(w,(M)) should
be a lattice in / x R. But this is impossible since H is not unimolular,
and the proof is complete.

14. The case a=90

In this section, we suppose a = 0. Our goal is to prove that non-
equicontinuous lightlike Killing fields do not exist in this case (for com-
pact manifolds).

Fact 14.1. X is a parallel vector field, that is, V,X = 0 for any
vector field A.

Proof. This follows from the formulas of §12, which we summarize
in the following:

Fact 14.2. We have

Vxx = VYY = [X,Y] = [X, Z] = VYX = sz = VYZ =O,
VzZ =[Y,Z] =1X.

Furthermore the derivative Y (l) equals a constant c.

Proof. The first two equalities are obtained from §12, by putting
a = 0, and the rest follows from proposition 12.15, which states that
the Ricci tensor is expressed by the matrix Y (I)J, and therefore Y (I)
equals a constant c.

In riemannian geometry, the de Rham decomposition theorem shows
that any parallel vector field gives rise to a local riemannian product.
Thus, the above relations must imply the space being flat (i.e., in the
fact above, ¢ = 0). This does not extend to Lorentzian geometry, as
examples satisying all the relations for ¢ # 0 exist (see below). Therefore
our nonexistence proof (of nonequicontinuous lightlike Killing fields) will
be achieved by global considerations. But to begin, let us investigate
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the local structure of these manifolds (without attempting to give a
systematic classification which seems to be possible).

Fact 14.3. In a neighbourhood of a given point x4, we can normalize
our adapted basis, such that other than the relations of 6.3, the Z— orbit
of xo 1s any given lightlike geodesic containing xo and transverse to F.
In this case the function l is constant on the leaves of the foliation L
generated by X and Z (it ezists because [X,Z] = 0). Furthermore the
leaf L., is geodesic and [ vanishes in it.

Proof. The first part is an improvement of 6.3. So in the proof of
that Proposition, we choose the curve ¢(z), to be a prescribed lightlike
geodesic, such that Z(c(z)) = 2 and < Z(z), X (zo) >= 1. This implies
that < Z(c(z)), X(c(z)) >=1 for any z € [0,1] (the Noether first inte-
gral) since X is Killing and ¢(z) is geodesic. Next we define Y along c(z)
to be orthogonal to Z, tangent to F and unitary, and so the rest of the
proof works like 6.3. Thus we have VzZ = 0, on the leaf £,,. From 14.2
it follows that this leaf is geodesic. Again by 14.2 we obtain V;Z =X
and hence [ vanishes in £,,. Now [Y, Z](l) = [X(l) = 0 since X pre-
serves all the data. Writing [Y, Z]l = Y Z(l) — ZY () = 0, and putting
Y (l) = constant yield Y Z(!) = 0. This means Z(!) is Y —invariant. But
! and so Z(l) vanish in £,,. Thus Z(l) = 0 everywhere (in a neighbour-
hood of z,). In particular ! is constant on the leaves of L.

A Lie algebra. Write T =[Y,Z] =1X. Then {X,Y, Z, T} generate
a Lie algebra G with relations :[X,Y] = [X,Z] = [X,T] = 0,[Y,Z] =
T,(2,T) = [Z,IX] = Z()X +1[Z,X] = 0 and [Y,T] = c¢X, where
c=Y().

This algebra, is solvable and determines a simply connected Lie group
GG. The isotropy group of zy is the one-parameter group I generated
by T. The quotient G/I is diffeomorphic to R?, and our initial fields
X,Y,Z T correspond to the left invariant vectors fields on G. Observe
now that for A an element of the Lie algebra generated by X and Z, also
the right invariant field on G that A determines, projects on G/I. This
follows from the fact that A centralises I. Let f* be the flow determined
by A in G/I; that is, f'(zI) = zA'l, where A* = exptA is the one-
parameter group determined by A. Then f* commutes with the flow of
each vector field of X,Y, Z and 7', since they are left invariant.

But then f* also preserves the metric since it is determined by the
scalar products among the fields X,Y and Z.

Note now that in £, , the left and the right actions of the elements
of the Lie algebra generated by X and Z are the same. In particular
the right action is transitive on £;,. This proves:
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Fact 14.4. Given zy, X,Y and Z as above, the group of isometries
preserving X,Y and Z acts transitively on the leaf L,,.

Next, to get more isometries, consider all the possible Z, or in other
words all the lightlike geodesics at x,. The union of all the so obtained
geodesic leaves L, contains an open set containing z, in its boundary.
By the previous fact, all these points are the images of z, by isometries
preserving X. By varying x4, we get:

Proposition 14.5. The Lie algebra G of local Killing fields preserv-
ing X (and so also F) acts locally transitively on M.

Notation. Denote by Z and H the isotropy algebra of z, and the
leaf F,, respectively.

Fact 14.6. H is an ideal of G.

Proof. First note that like X, the 2— plane field X+ (or equivalently
F), is parallel. That is for any vector fields A and B, if B is tangent
to X+, then V4B is tangent to X*. Indeed < B, X >= 0, and hence
< VaB, X >= — < B,V4X >= 10, since X is parallel. Next observe
that if furthermore A is a local Killing field commuting with X, then
< VA, X > + < B,VxA >= 0, since A is Killing. But Vx4 =
VaX = 0. Hence VpA is tangent to X*. This implies that [A, B] is
tangent to X+, and so H is an ideal of G.

The dimension of A may be 2 or 3. The first case is “trivial” as this
will be seen later.

Proposition 14.7. If dimH = 3, then it is isomorphic to the Lie
algebra of the Heisenberg group with X corresponding to the center.

Proof. The universal cover of a leaf of F is identified to R?, with
the orbits of X corresponding to the parallels to the xz—axis and the
sub-riemannian metric corresponding to dy® (see §9). Thus X is a lin-
ear combination of the vector fields determined by a transvection flow
(z,y) — (z + ty,y) and a translation flow along the z—axis.

But since X is nonsingular, it must correspond to a pure translation
flow. Therefore the centralizer of X in the group of affine transforma-
tions preserving dy? is generated by X together with A (the transvection
field above) and B, the translation flow along the y—axis (see §9). We
have [A, B] = X, and hence the so generated Lie algebra is of Heisenberg
type.

We deduce from this that G is solvable. Let G be the corresponding
simply connected Lie group. Let zo be a given point. Its isotropy
algebra, if nontrivial, corresponds to a transvection field A in the leaf
Fzo- It generates in G a one-parameter group I, closed in G since G is
solvable and simply connected [2]. Therefore the quotient space G/I
exists and M is modeled on it. Let I' C G be the holonomy group.
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It acts by the left translations on G/I. We are now going to find a
contradiction with nonequicontinuity of the flow of X.

Case 0. The isotropy group I is trivial (or equivalently dimH = 2).
Equip G with a left invariant riemannian metric. It passes to M since "
acts by the left translations. It is also preserved by X since it is central.
Therefore X is a Killing field for a riemannian metric and in particular
equicontinuous.

Now, we assume that I is nontrivial. Then the isotropy algebra Z
is generated by a transvection flow A, and the isotropy algebra H of
the leaf F,, is generated by X, A and B, a translation flow along the
y—axis. Let H be the (Heisenberg) group determined by #.

Case 1. A = T'N H is nontrivial. We know that the leaves of F
are complete. Hence the leaf F,, is homeomorphic to the quotient of
H/I by A which acts freely on H/I. Since A is nontrivial, this leaf is
a cylinder and so A is cyclic. We first show that A intersects trivially
the one-parameter group generated by X. Indeed, if not the flow X on
M should be periodic (not only for z,) since X is central. Therefore
A is contained in a one-parameter group different from that of X and
A, and is invariant by I". This determines in M a nontrivial vector field
commuting with X. This is impossible by 7.2.

Case 2. 'N H = {1}. Thus I injects in G/H =~ R and therefore
is abelian. Let a be an element of I" (and hence not belonging to H)
which is not central in G. Let L be a one-parameter group containing
a (this is not necessarily unique).

Claim. T centralises L (this yields as above a nontrivial vector field
in M, commuting with X. Contradiction).

Proof. Let Z be the centralizer of a in G. It contains L and I" since I'
is abelian. It may be written as a semi-direct product Z = LN, where
N is the centralizer of a in the Heisenberg group H. Therefore N is a
closed connected Lie subgroup of H; the connectedness follows from the
fact that the exponential map in H is injective, and so if an element
belongs to N, then all the one-parameter group containing it is lying
in N. The dimension of N may be 0,1 or 2, but not 3 since @ is not
central in G.

i) dimN = 0. This implies I' C L, and the claim is obvious.

il) dimN = 1. The one-parameter group L acts on N as a one-
parameter group g° of the exterior automorphisms, with the el-
ement g' corresponding to a, which is trivial ( = identity) since
by definition g centralizes N. But in dimension 1, this implies
g' is trivial and so Z = LN is abelian. Therefore the claim is
true in this case.
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iii) dimN = 2. The subgroup N must contain the center of H (i.e.,
the one-parameter group determined by X) since it is known
that the center of the Heisenberg group has no supplementary
subgroup. Therefore at the Lie algebra (of N) level, the one-
parameter group g' has an eigenvector. But, ¢! trivial means g
is conjugate to the a one-parameter group of rotations. This is
impossible unless g* is trivial. Therefore Z and in particular T
centralizes L. This proves the claim in this case and so finishes
the nonexistence proof of nonequicontinuous Killing fields in the
case ¢ = 0.

Examples of spaces satisfying a = 0. Consider in R?, the follow-
ing three vector fields X,Y and Z:

X = (1’070)7
Z = (O’O’ ]‘)7
Y = (eyz+dy+ez1,0).

Then [X,Z] =[X,Y]=0and [Y,Z] = (cy + €)X. Thus Y(cy +¢) =
a%(cy + e) = c. We construct a Lorenztian metric on R?® by setting
< X, X >=< XY >=< Y,Z >=< Z,Z >= 0 and < Y|Y >=
< X,Z >=1. That is the metric dzdz + dy? — (cyz + dy + ez)dydz.

This metric has a Ricci tensor R(u,u) = ¢ < u,Ju > where J is as
in §12, the linear map that sends X and Y to 0 and sends Z to X.

It seems that in the representation above only the parameter c is
relevant, and all the spaces with a = 0 are of this form. Another way
to justify this hypothesis is to consider the homogenous space G/I as
above, where G is a normal extension of the Heisenberg group H. Such
a space possesses a G—invariant Lorentz metric if Ad(I) preserves a
Lorentz scalar product on G/Z. The space of isomorphism classes of
these extensions has (as the parameter ¢ above) dimension 1.

15. Singularities

In this section, we prove that singularities can not occur for lightlike
nonequicontinuous vector fields. Suppose the contrary and let S be the
singular locus:

S={z€eM/X(z)=0}={z € M/¢'z = z,Vt}.

As the set of fixed points of isometries, S is the union of a finite dis-
joint set of closed geodesic submanifolds. It can not contain a 2—dimen-
sional (i.e., of codimension 1) submanifold, since otherwise ¢! would be
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equicontinuous by 3.6. Hence § is a finite disjoint union of points and
closed geodesics.

Fact 15.1. The foliation F (defined in M — S by the 2—plane field
X1 extends continuously to M. Furthermore the foliation by orbits of
X extends continuously to M, as a 1—dimensional geodesic foliation D.

Proof. Let zo € S, and V be a compact convex neighbourhood of
it. This is not a flow box for F, since B — S is not compact; but as
the leaves are geodesic, the foliation in it is topologically trivial. Let
D, be the connected component of zy in S. Then Dy = {z0} or Dy is a
closed geodesic containing zy. The situation here is geometricaly similar
to R*—{(0,0,0)} or R*—R. x {(0,0)} foliated by planes. For z € B, let
P, be its plaque in B, that is the connected component of z in F, N B,
and let P, be its closure in B.

Case 1. Dy = {2,}. We shall see that this is impossible. Indeed in
this case only one plaque Fy contains z, in its closure, and also the
orbits of X define a foliation by geodesics in Py = P, — {z,}. But by
8.1, the orbits of X are in fact parametrized geodesics, and so exit every
small convex subset. Thus these pieces of geodesics are closed in P, and
none of them contains z, in its closure. Contradiction.

Case 2. D, is a geodesic. As in the above argument, we show that
the foliation by orbits of X, in B — Dy, extends continuously to B,
such that Dy becomes a leaf. In particular D, is lightlike. Again as
above, we see that if for a plaque Py, Py N Dy # 0, then D, C F.
Moreover P, is necessarily the degenerate geodesic half-surface defined
by the lightlike geodesic Dy. It then follows that if Py and P, are distinct
plaques containing Dy, then P,UP, is a “smooth” geodesic surface. This
is exactly that defined by the orthogonal of Dy. This finishes the proof
of the continuous extensions for F and D.

Now the proofs in the previous sections, for the nonsingular case,
extend (continuously!) to the singular one. In particular there is a
constant a, the same for all the leaves, which affinely classify them. We
may assume that a equals 1 or 0. That is the leaves are modeled on AG
or R?. Let us restrict ourself to AG since it requires more care.

Let zo be a singular point, and z; be a nonsingular point in its
leaf. Near z;, the leaf-connection depends continuously on the leaf.
Therefore, in a neighbourhood B of z; we may find developping maps
d, : P, =& AG, from the plaques P, to AG, which depend continuously
on z. Furthermore the flow of 2 corresponds to a one-parameter group
{(ho®* R} in AG x AG, with o and 8 continuous in x. It acts on
AG by z — he®t2pP®! (see 9.4). Fortunately, there is a local way to
detect if such a one-parameter group is somewhere singular:
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Fact 15.2. The flow z — h*tzhPt on AG is nonsingular if and only
if & and B have the same sign and at least one of them does not vanish.

Proof. An element z of AG has the form z = g“h®. Thus h®*g*h*hPt
= g“h2t* " h*hPt. Therefore z is singular if and only if ae™* + 3 = 0.

Now since there are at most a finite set of leaves of F containing
singularities, we get: a(z) and £(z) have the same sign in a dense set
of B. The same is true for z;. Hence a(z;) = 8(z;) = 0, since we know
that the leaf F,, contains z, as a singularity. But this implies all the
points of the leaf are singular. Contradiction.

16. Proofs of Theorem 2 and Theorem 3.

Proof of Theorem 3. In the Anosov case, this was proved by E.
Ghys, who also remarked that this is true for small deformations of
any general flow. In particular for a deformation of a surface group
' C PSL(2,R) in PSL(2,R)x{h!} by v — (v, h?) and ¢ small (for a
fixed generating set), the so obtained flow is smoothy orbit equivalent to
the horocyclic flow. In order to prove the theorem in the general case, we
just remark as W. Goldmann [6] did that any deformation is equivalent
to a small one. For this we conjugate I' in PSL(2,R) x PSL(2,R) by
an element (1,¢%) = I*; thus I!TVI7t = {(y, gth*®g~t)}, since gth®g~t =
h*”" the deformation is small for ¢ large enough.

Proof of Theorem 2.

1) The suspension case. Let A be a hyperbolic linear automor-
phism on a torus T2. We consider the Lorentz structure defined by
< uf,u* >= w(u®,u*), where u® and u* are vectors tangent to the sta-
ble and the unstable directions respectively, and w is a linear volume
form. This metric is flat, as it lifts to a Minkowski metric on R2. Fur-
thermore, A preserves it, and so the product (flat) metric on T? x [0, 1]
passes to a flat metric on T? x [0, 1}/ (4,1)~(4z,0), and the suspension flow
/0t preserves it. One may also multiply it by different positive con-
stants along the factors T? and [0, 1], to obtain another flat metric. To
prove conversely that any invariant metric is of this type, observe that
by the Anosov property, the stable and the unstable directions must be
orthogonal to the flow. Therefore, the metric on T? x [0,1] is a product
since ¢’ is isometric. The problem is thus reduced to check that up to a
constant, the above metric on T? is the only one which is invariant by
A. This follows from the ergodicity.

2) Now, let us show that a Ghys flow canonically determines (up to
a constant) a metric of constant negative curvature.

2.1) The Anosov case. Consider the one-form w such that w(X) =1
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and Ker(w) equals the sum of the stable and the unstable spaces. Con-
sider now the Kanai metric <, > such that Ker(w) is orthogonal to X,
<X, X >=1, and <Y, Z >=dw(Y,Z) for Y, Z € Ker(w). Of
course this is defined by means of the flow only. We know that this is
nondegenerate since Ker(w) is not integrable. Next, a calculation that
we omit since it is straightforward and very elemantary compared to
that of §12, shows that this metric has a constant negative curvature.

Remark. The consideration of the Kanai metric and the calculation
mentioned above gives, as any one expects, an alternative simple proof of
the Ghys classification of Anosov flows with smooth stable and unstable
distributions. Of course this only works when Ker(w) is nonintegrable,
but the alternative case is easily seen to correspond to suspensions.

2.2) The parabolic case. We start with a metric <,> of constant
curvature. Thus up to a constant any other invariant metric has the
form <, >, described in §12, and by 12.15, the Ricci curvature of <, >,
is given by the matrix —2a?I — 6a’aJ. Hence <, >, is of Einstein type
if and only if @ = 0. Therefore, there is (up to a constant) exactly one
invariant metric of constant negative curvature.

3) The proofs of most of the points in this part are straightforward.
Let us just mention how to prove that all the metrics <, >, for a >
0, are locally isometric to <,>;. More precisely, the corresponding
metrics on PSL(2,R) are (globally) isometric (analogously, for @ <
0, the metrics are isometric to <,>_;). For this, recall that the Lie
algebra G of PSL(2,R) is generated by X, Y, Z with relations [Y, X| =
-X, [Y,Z] = Z and [X,Z] =Y (warning : this notation for X and Y’
is opposite to the usual one, but of course compatible with our earlier
notation). Up to a factor 2, the Killing form is given by < Y, Y >=
1, < X, X >=<Z.Z>=0and < X,Z >=-1.

The scalar product <,>,, invariant by ezp(adx), takes the same
values as the Killing form except < Z,Z >,= o.

Let h, be the left invariant metric on PSL(2,R) determined by
<,>4. We claim that the right translation z — zg¢* by the hyperbolic
one-parameter group g* maps h; isometrically to h, if & = e~?*. Indeed,
for this, it suffices to show that Ad(g*) maps the scalar product <,>;
to <,>,, and this is obvious, since Ad(¢*)Z = €'Z, Ad(g"')X = e *X
and Ad(g")Y =Y.

4) This follows from the discussion above.

Remark 16.1. It is seen from [8] that all the present metrics are
complete. So, compact Lorentz 3-manifolds admitting nonequicontinu-
ous Killing fields are complete.
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